
Breaking the monolith

application:

A deep dive into replatforming

Cloud Transformation

and IT Modernization

Abstract

Our previous whitepaper, “Rebuilding and replatforming legacy applications” dove into CGI’s two-step approach

for modernization: (1) replatforming existing applications from bare-metal or virtual machines to containerized

target environments and (2) gradually eliminating complex applications by rebuilding their functionality as native

cloud services. The requirements are clear: applying a streamlined approach is essential to effectively building

and leveraging cloud native services.

Curious how we break it down further? The CGI cloud-native team has helped many clients transform their

monolith applications into smaller cloud native applications that can scale and benefit from a cloud platform

in a relatively small timeframe. This whitepaper dives deeper into CGI’s approach for replatforming monolith

applications with a look into our cloud transformation approach. We share the details of our methodology,

highlighting the strategies, tooling, and platforms that have helped our projects succeed.

This whitepaper describes a very detailed process of how cloud transformation was implemented in a specific

project. Therefore, in addition to the used procedure, the deployed applications and partner companies are also

mentioned.

Breaking the monolith application: A deep dive into replatforming

2

Defining the terms: Cloud-native

applications versus microservices

A microservice by default is often built as a cloud-native application. However, not all cloud native applications

are necessarily microservices. A mature cloud-native application should adhere to the generally-accepted

Twelve-Factor Application principles and it is not coupled to a specific container. In this type of mature

application, all backing services are detached and bound at runtime; and it is light weight with a small startup

and shutdown time. Because of these characteristics, a cloud-native application can benefit from a cloud

container platform by being scalable and deployable independently from other applications.

A microservice has some inherent complexity. Not every application is a good fit to be turned into a microservice.

By definition, a microservice should not share anything with other applications, such as a database or common

libraries. Transitioning from a monolith application directly into a microservice model is a high risk and high effort

undertaking. In many cases, the ideal transformation path for a monolith application is to break it into smaller

cloud-native applications, and later on, if applicable, into microservices. This diagram depicts this path:

Our transformation recipe

Breaking a monolith application is not a trivial exercise. Most team members may perceive it as daunting. After

going through multiple application transformation projects at CGI, we have created a repeatable transformation

approach to mitigate risk by addressing the monolith application in iterative stages. With the exception of

Stage 1, all stages can and should be executed in parallel. The stages are as follows:

• Stage 1 – Make the monolith work outside the current container

• Stage 2 – Make the monolith work in the cloud

• Stage 3 – Break the monolith into smaller applications or micro services

• Stage 4 – Virtualize (“lift and shift”) internal hosted services

Cloud App1

Cloud App2

Cloud App3

Cloud App1

Cloud App2

Microservice

Monolith

3

Our transformation journey

Let’s walk through a hypothetical transformation journey with an application based on CGI’s collective recent

projects. Here’s what we are working with: The initial monolith application consists of a public-facing, Java-

based web application. This monolith hosts multiple REST and SOAP based APIs. The primary application

database is a Microsoft SQL Server database. It uses Apache ActiveMQ for message queuing.

Our goal for this hypothetical transformation is to break the monolith into smaller cloud-native applications and

deploy them using Pivotal Platform hosted on Google Cloud Platform (GCP).

Stage 1 – Make the monolith work outside the current container

Codebase (Factor I1)

The first step is to get the codebase migrated into the desired source control repository. A new branch needs to

be forked for the cloud transformation effort. In most cases, ongoing development cannot be halted and thus a

code synchronization strategy will be needed. It helps if the same source control system is used for both original

and transformed code (e.g. GIT to GIT). However, that is not always an option. For instance, the current source

system may be SVN (Subversion) and the desired target source system may be GIT. In that case there are

bridges such as git-svn that can help merge the code.

Dependencies (Factor II)

Dependencies from your code should be available through an internal artifact repository manager, such as

Nexus or Artifactory. As part of this effort you may need to make all dependencies available through your

corporate artifact repository manager.

You also need to externalize dependencies from your code, if not already done. In Java applications, this can

be accomplished using Gradle build files or Maven POM (Project Object Model) files. Gradle allows you to easily

convert Maven POM files to Gradle build files. Both Gradle and Maven have equivalent capabilities. We tend to

prefer Gradle, as it uses a more compact format (Groovy based) than Maven (XML based).

Decouple from current container

A big step in this stage is to make the monolith application work outside the current container. In our example

application, the application is hosted using Apache Tomcat which makes it relatively easy to decouple from the

container. We introduced Spring Boot and embedded Apache Tomcat as a dependency. Additionally, we had to

convert configuration from the application’s web.xml file (e.g. URL mappings) into equivalent Spring annotations.

In other projects, the monolith may be hosted in WebSphere or WebLogic Application Servers. A full JavaEE

Application Server provides more container services, sometimes proprietary, which could make it harder to

detach from that container. In the case of IBM, they provide tools that analyze existing applications and provide

a list of changes needed. The WebSphere Liberty profile is a good transition path to the cloud, as it runs in most

cloud containers, including Pivotal Platform and Red Hat OpenShift.

Breaking the monolith application: A deep dive into replatforming

1 From the Twelve-Factor Application Principles

4

NFS

Internal
Services

Message
Queues

SOAP

Externalize configuration (Factor III)

In the ‘Externalize Configuration’ stage, we externalize property values that are stored in the web.xml file into

application YML (Yet another Markup Language) files. There are often code changes needed to make the legacy

classes worked with the Spring injected configuration (read from YML files).

Stage 1 complete

At the end of stage 1, you should have a Spring Boot monolith application running locally. The application could

be deployed to a cloud container and partially functional, as long as most of the backing services

(e.g. database) are reachable from the cloud platform.

5

Breaking the monolith application: A deep dive into replatforming

Stage 2 – Make the monolith work in the cloud

Replace container provided services

An Application Server provides value added services. By decoupling from the application server, we now need

to replace those services provided. An example of these services is database connection pooling. To replace

this service, we introduced HikariCP, a popular library used for database connection pooling in detached

containers.

Externalize configuration – Part 2

Configuration was first externalized into application YML files in stage 1. We now need to make them available

to our application in the cloud. We can accomplish this by using Spring Cloud Config and we configure the

Spring Cloud Config Server to read environment specific files from a GIT repository. At runtime, the application

instances connect to the cloud and retrieve the configuration file as part of the Spring boot initialization.

Backing services (Factor IV)

In a cloud-native application, all backing services (e.g. database, message queuing system) need to be provided

to the application and bound at runtime. Changing the application to treat services this way is generally not a

large effort; however, it can be difficult to make the services available to the cloud platform, especially if they are

not available through the corresponding cloud platform service catalog. These are some examples of backing

services and strategies for making them available as attached resources in the cloud:

• Web session storage

In most legacy applications, web session is stored in memory and user sessions are preserved by

routing the user to the same server (using “sticky” sessions). In a cloud-native application, the web

session must be offloaded from memory. A popular solution for offloading web session is Redis. Redis

provides a highly available and high-performance session store which can be easily integrated with

Spring. Furthermore, Redis is available in the Pivotal Platform’s service marketplace and can be bound

to applications at runtime. Another alternative to Redis for web session storage is Pivotal Cloud Cache

(PCC).

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

1
.

M
a
k
e
 i
t

ru
n

 o
u

ts
id

e
c
u

rr
e
n

t
c
o

n
ta

in
e
r

Branch

Codebase

Decouple

from

Container

Externalize

Configuration

Externalize

Dependencies

Spring Boot

Application

running locally

This flow chart depicts a typical timeframe for this stage (1-2 months):

6

2 We explored the use of the NFS service tile available for the Pivotal Platform, however at the time of writing, this service was

still in the experimental phase and could not be used for go-live. Instead, we relied on the use of our cloud platform specific

capability, i.e. Google Cloud Storage Buckets. Changing the code to use buckets was not a significant effort, but that may vary

depending on your application.

7

• Database

There are multiple databases that can be provisioned via the Cloud Platform service catalog. For

instance: MySql, MongoDB, PostgreSQL are available in PCF’s Service Marketplace. Due to the

licensing model, Microsoft SQL Server is not currently available in PCF’s marketplace, hence we had

to make the database available in a GCP virtual instance.

• File share

File share access is not the most ideal way to transfer info in the cloud, but most legacy applications

rely on it and replacing it can be a large effort. Fortunately, there are a few options to make file share

access work in the cloud. One is simply to make NFS (Network File System) available to the cloud.

This can be an NFS hosted in multiple virtual instances in the cloud.2 As a general rule for file sharing

in cloud native applications we recommend using an object store instead of leveraging NFS file shares

via the Volume service on the Pivotal Platform.

Build and deploy pipelines (Factor V - Build, release, run)

At this point, we have an application ready to run in the cloud in multiple instances. Next, we need a way to

build our code and deploy it to the cloud. Jenkins is a popular CI/CD tool (Continuous Integration/Continuous

Deployment) tool for accomplishing this. Along with Jenkins, we use Concourse for pipelines as a service. We

leverage Jenkins pipelines to trigger the build (upon commits to develop branch in our git repository) and also

to deploy to development, QA, and eventually production. Code should be built once and the same binary

should be deployed to different environments.

Stage 2 complete

At the end of this stage, your application should be running in the cloud using multiple instances and be

almost fully functional, depending on whether all internal services used by the application are available in

the cloud.

NFS

Internal
Services

RabbitMQ

Breaking the monolith application: A deep dive into replatforming

8

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

1
.

M
a
k
e
 i
t

ru
n

 o
u

ts
id

e
c
u

rr
e
n

t
c
o

n
ta

in
e
r

2
.

M
a
k
e
 i
t

ru
n

 i
n

 t
h

e
 c

lo
u

d

Branch

Codebase

Decouple

from

Container

Externalize

Configuration

Externalize

Configuration

(Part 2)

Backing

Services -

Database

Externalize

Dependencies

Spring Boot

Application

running locally

Spring Boot

Application

running locally

Replace

old container

services

Backing

Services -

Web Session

Backing

Services -

File Share

Our updated swim lane diagram shows how tasks can be executed in parallel:

Stage 3 – Break monolith into smaller applications/microservices

A monolith application normally consists of one application that contains multiple custom application libraries:

Even if your end goal is not to rely on microservices, we recommend following the Application Continuum

approach3 for breaking your monolith applications into applications and components.

The first step is identifying candidate applications to become new applications. Inspect all of the entry points

to your application: web UI, REST APIs, message queue consumers and scheduled tasks. Those entry points

are good candidates to become stand-alone applications. In addition to the Application Continuum, there are

multiple strategies for microservices. We also extensively employ Domain Driven Design (DDD) techniques such

as Event Storming and Domain Storytelling. During this process, also identify ways to break shared libraries

into smaller libraries to identify new code boundaries and possible candidates for microservices. In the diagram

below, we break out two new applications from our monolith – one queue consumer application and one REST

API application:

3 https://www.appcontinuun.io

9

Web-app

JAR

JAR

app-lib

common-lib

These 2 new applications are also implemented as Spring Boot applications and can be deployed independently

from the main web application. They can also be scaled independently. The new applications have small

startup and shutdown times because they are initializing less components. They are also faster to deploy as the

application binaries size is smaller.

Continuing through this process, we end up with a total of 8 applications: 4 queue consumer apps, 1 REST

API application and 2 scheduled tasks applications. Our monolith application is now much smaller, and it is

exclusively a web application with no unnecessary entry points.

Consumer-1-app

Web-app

app1-app

JAR

JAR

app-lib

app1-1-lib

JAR

common-lib

Breaking the monolith application: A deep dive into replatforming

10

These new, smaller applications are all cloud-friendly and can be released and scaled independently from each

other. However, they still share common libraries and a common database, hence they cannot be considered

microservices. If a defect is found in one of the common libraries, it may force you to redeploy all applications

using that library.

This transformation can be accomplished in a relatively short timeframe, allowing you to move to the cloud

quicker and enabling your organization to release sooner and more frequently. The libraries can be gradually

broken into smaller libraries and eventually become microservices.

Our transformation swim lane shows that at the end of stage 3, we now have multiple Spring Boot applications

running in the cloud that could be released assuming that all external systems are reachable in the cloud. It also

shows the parallelism within the 3 stages.

Consumer-1-app

Consumer-2-app

Consumer-4-app

scheduler-1-app

Consumer-3-app

consumer-scheduler-app

Web-app

api1-app

JAR

JAR

api1-1-lib

JAR

JAR

ws-client-1-lib

app-lib

common-lib

11

Breaking the monolith application: A deep dive into replatforming

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

1
.
M

a
k
e
 i
t

ru
n
 o

u
ts

id
e

c
u
rr

e
n
t

c
o

n
ta

in
e
r

2
.
M

a
k
e
 i
t

ru
n
 i
n
 t

h
e
 c

lo
u
d

Branch

Codebase

Decouple

from

Container

Externalize

Configuration

Externalize

Configuration

(Part 2)

Backing

Services -

Database

Externalize

Dependencies

Replace

old container

services

Backing

Services -

Web Session

Backing

Services -

File Share

3
.
B

re
a
k
 t

h
e

m
o

n
o

lit
h

Spring Boot

Application

running locally

Spring Boot

Application

running locally

Multiple Spring
Boot

Applications
running in cloud

One app +

one library

Multiple apps

(queue consumers)

+ libraries

Multiple apps

(schedulers)

+ libraries

12

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

1
.
M

a
k
e
 i
t

ru
n
 o

u
ts

id
e

c
u
rr

e
n
t

c
o

n
ta

in
e
r

2
.
M

a
k
e
 i
t

ru
n
 i
n
 t

h
e
 c

lo
u
d

Branch

Codebase

Decouple

from

Container

Externalize

Configuration

Externalize

Configuration

(Part 2)

Backing

Services -

Database

Externalize

Dependencies

Identify lift

and shift

candidates

Virtualize
legacy

apps into
cloud container

Make legacy
services
available

to the cloud

Replace and
deprecate

legacy
services

Replace

old container

services

Backing

Services -

Web Session

Backing

Services -

File Share

3
.
B

re
a
k
 t

h
e

m
o

n
o

lit
h

4
.
V

ir
tu

a
liz

e
in

te
rn

a
l
s
e
rv

ic
e
s

Spring Boot

Application

running locally

Spring Boot

Application

running locally

Multiple Spring
Boot

Applications
running in cloud

Multiple Spring
Boot

Applications
running in cloud
(fully functional)

One app +

one library

Multiple apps

(queue consumers)

+ libraries

Multiple apps

(schedulers)

+ libraries

Stage 4 – Virtualize/lift and shift internal hosted services

This stage is often the least exciting one, albeit an important one. Your monolith may depend on enterprise

systems that are not going to be moved to the cloud. It may also leverage packaged applications. It is critical to

identify and plan a strategy for these systems as early as possible in the project.

Because this stage typically requires the most elapsed time, it is important to start this stage early in parallel with

other stages, as it may require infrastructure changes or impact systems that you have less control over. The

first step in this stage is to identify these shared applications and determine one of the following strategies:

1. Can they be virtualized (“lift and shift”) in the cloud? This will be the case when all the dependent applications

are hosted in the cloud.

2. Can the shared application become reachable from the cloud? This can be a good option for applications

that are shared between cloud and non-cloud hosted applications.

Once all dependent applications are made available from the cloud platform, our new transformed cloud

applications will be fully functional in the cloud and will be ready to be released.

13

Breaking the monolith application: A deep dive into replatforming

14

Are you ready to move your

monolith to the cloud?

We broke down step-by-step our application transformation

approach based on best practices, tooling, and timelines to

share our keys to success. With our extensive experience

transforming cloud-native applications, we know that each

application transformation journey is different and presents

unique challenges.

Our cloud-native transformation experts are ready to help

you navigate this complex journey. Learn more about our

application transformation capabilities here.

15

About CGI

Founded in 1976, CGI is among the largest IT and business consulting services firms in the world.

Operating across the globe, CGI delivers end-to-end capabilities, from strategic IT and business

consulting to systems integration, managed IT and business process services and intellectual

property solutions, helping clients achieve their goals, including becoming customer-centric digital

enterprises.

CGI was pleased to receive the 2019 EMEA Systems Integrator of the Year for Customer Impact

by Pivotal Software, Inc. The Customer Impact award recognizes CGI for its leadership in driving

customer success and scale with the Pivotal Platform. In 2018, CGI received the 2018 AMER

Systems Integrator of the Year for Platform Scale award from Pivotal. The Platform Scale award

recognizes CGI for its technical expertise and leadership in helping to promote the success of the

Pivotal Platform as part of our application transformation engagements.

© 2019 CGI Deutschland B.V. & Co. KG

CGI Deutschland B.V. & Co. KG

Leinfelder Straße 60

70771 Leinfelden-Echterdingen

T.: +49 711 72846-0

E-Mail: info.de@cgi.com

www.de.cgi.com

